

Heliophysics
Integrated
Observatory

Project No.: 238969
Call: FP7-INFRA-2008-2

Semantic Mapping Service
Developers Guide

Version 0.1

Title: Semantic Mapping Service – Developers
Guide

Document No.: HELIO_UNIMAN_S2_005_TN_SMS
Date: 23 March 2012
Editor: Anja Le Blanc, The University of Manchester
Contributors:
Distribution: Project

Semantic Mapping Service – Developers Guide
Version 0.1

21/9/13 22:34 ii

Revision History

Version Date Released by Detail
0.1 23/03/2012 Anja Le Blanc Initial Draft

Note: Any notes here.

Semantic Mapping Service – Developers Guide
Version 0.1

21/9/13 22:34 iii

1	 Introduction .. 1	
1.1	 Assumed Knowledge for the Developer ... 1	

2	 System Requirements ... 1	
3	 Download, Build, Install .. 2	

3.1	 Downloading Source ... 2	
3.2	 Building SMS .. 2	
3.3	 Installing in Tomcat ... 2	

4	 Code Structure .. 2	
4.1	 Dependencies ... 4	
4.2	 Logging ... 4	
4.3	 Java doc ... 4	

5	 Unit Tests ... 4	
5.1	 Ontology tests .. 4	
5.2	 Web service tests ... 4	

6	 Maintaining & Extending the Service .. 6	
6.1	 Maintaining & Extending the Ontology .. 6	

6.1.1	 Add new HEC catalogues ... 6	
6.1.2	 Extend the Ontology further ... 6	

6.2	 Maintaining & Extending the Web Service .. 6	

Semantic Mapping Service – Developers Guide
Version 0.1

21/09/2013 22:34 1

1 Introduction
The Semantic Mapping Service (SMS) provides a set of functions which use the HELIO
ontology as source of information. It is only implemented as SOAP web service.

1.1 Assumed Knowledge for the Developer
To build the service
Java (compile
service)

http://www.oracle.com/technetwork/java/javase/overview/index.html

Tomcat (web
container to host the
service)

http://tomcat.apache.org/

Maven (build
system)

http://maven.apache.org/ (or use a plug-in to your development
environment)

To extend the service
SOAP + WSDL
(web service
definition)

http://www.w3.org/TR/wsdl (or use a plug-in to your development
environment)

OWL (interaction
with the ontology)

http://www.w3.org/TR/owl-ref/
http://owlapi.sourceforge.net/

HermiT (ontology
reasoner)

http://hermit-reasoner.com/

2 System Requirements
The SMS requires a web application container such as Tomcat. The web services was
developed and tested using Apache Tomcat 6, but the author does not know of any reason
why it should not be able to work in a different web container. It was tested in a Windows
and Linux OS.

To build the service from its source a Java compiler and the Maven build environment are
required; a valid POM file is part of the source.

Semantic Mapping Service – Developers Guide
Version 0.1

21/09/2013 22:34 2

3 Download, Build, Install

3.1 Downloading Source
The SMS source code is part of the HELIO-vo project in sourceforge. The main page is:
http://sourceforge.net/projects/helio-vo/. You can download the complete source code using
svn with:
 svn co https://helio-vo.svn.sourceforge.net/svnroot/helio-vo helio-vo

SMS is located in the helio-sms folder.

3.2 Building SMS
SMS is configured to be built using Maven. It is recommended to make a

 maven clean

before building and

 maven package

in the helio-sms directory.
This will build a war file (helio-sms-version.war) in the targets directory.

3.3 Installing in Tomcat
Installing SMS in Tomcat is done by copying the sms war file into the WEBAPPS directory.
The location of the WEBAPPS can be found in the server.xml of the Tomcat installation. It
is part of the <Host> section. If in the same section the attribute unpackWARs is set to ‘true’
and the attribute autoDeploy is set to ‘true’ the unpack an deploy will happen automatically
at restart of Tomcat.

4 Code Structure
All Source code is place in the src directory. Building the project will produce a targets
directory into which all output files are placed. All java code for the web application is
located in a sub directory main within src. The directory test contains files necessary for
the unit tests of this application. The service is using an ontology over which it is reasoning
to compute the return strings. The ontology owl files are contained in the resources folder
in the main directory. The WEB_INF folder contains necessary configuration files for the web
applications container (like Tomcat) and the description of the SOAP service in a separate
wsdl directory.

Semantic Mapping Service – Developers Guide
Version 0.1

21/09/2013 22:34 3

src

main

java

eu

heliovo

sms

ontology

dlquery

Web service java
files

Ontology java files

Dlquery related java
files

resources

Resource files such
as ontology owl

files

webapp

WEB-INF

wsdl

wsdl file and xsd
file describing ypes

in wsdl
Web container

config files

site

test

java

resource

Resource files such
as ontology owl

files

Java test files

Semantic Mapping Service – Developers Guide
Version 0.1

21/09/2013 22:34 4

4.1 Dependencies
jxws-api.jar version 2.1
jaxws-rt.jar version 2.1.4
owlapi.jar version 3.1.0
HermiT.jar version 1.3.2

4.2 Logging
SMS is using log4j logging mechanism to write its logging information into a file sms.log
in the tomcat logs directory. The logging configuration file logs4j.properties is placed in the
\WEB-INF\classes directory. Default logging level is set to INFO.

4.3 Java doc
The Java doc files can be generated from the source. Public functions are annotated with the
required tags.

5 Unit Tests
Unit tests are divided into two categories. The first is testing the ontology and the second is
testing the web service.

5.1 Ontology tests
Ontology tests are run against the ontology in the main branch of the source code.
There are two tests the first one tests the consistency of the ontology; the second one testing
whether there are unsatisfiable classes.

Check consistency of
ontology

testOntologyConsistency() Check whether ontological
reasoner returns true for
isConsistent() call.

Check for unsatifiable
classes

testUnsatisfiableClasses() Check the number of classes
which are classified as
unsatisfiable by ontological
reasoner function call
getUnsatisfiableClasses()
is zero.

5.2 Web service tests
The tests of the web service are run against a stable ontology in the test branch to make sure
that results do not change with the further development of the ontology. Tests are done on
the functions of the service where the returned values are compared with expected ones.

Get classes from ontology getOwlClassTest() Correct input; check against

expected output
getOwlClassTestWrong() Wrong input; check against

expected empty result set
getOwlClassTestWrong2() null input; check against

expected empty result set
Get related classes from getRelatedclasses() Correct input; check against

Semantic Mapping Service – Developers Guide
Version 0.1

21/09/2013 22:34 5

ontology expected output
getRelatedWrong() Wrong input; check against

expected empty result set
getRelatedWrong2() null input; check against

expected empty result set
Get equivalent classes
from ontology

getEquivalents() Correct input; check against
expected output

getEquivalentsWrong() Wrong input; check against
expected empty result set

getEquivalentsWrong2() null input; check against
expected empty result set

Get event catalogue names
from Ontology

getEventCatalogues() Correct input; check against
expected output

getEventCataloguesWrong() Wrong input; check against
expected empty result set

getEventCataloguesWrong2() null input; check against
expected empty result set

getEventCataloguesWrong3() Input of a known class in
ontology which is not a HEC
catalogue; check against
expected empty result set

Semantic Mapping Service – Developers Guide
Version 0.1

21/09/2013 22:34 6

6 Maintaining & Extending the Service
Maintaining and extending the service can be split into two sections. The first one is how to
maintain and extend the ontology the second is how to do this for the web service.

6.1 Maintaining & Extending the Ontology
To maintain and extend the ontology you should use an ontology editor such as Protegé
(http://protege.stanford.edu/). Do not change the names of existing relationships since this
might break the existing web service functions. Always apply consistency checks and reason
over the ontology before moving modified ontology into the web service.

6.1.1 Add new HEC catalogues
Catalogues are part of the Organisational Ontology. To add a new HEC catalogue you need
to add a new class as a child to the class ‘Catalog’ and annotate this class with the annotation
properties:

• HELIOIdentifier with the value of the name of the catalogue as used in the HEC
• HELIOService with the value ‘hec’
• dc:description should get the value of a short description of the content of the new

catalogue
The new catalogue needs also to be bound to one or more physical phenomena. For this you
add each a ‘Superclass’ with the correct relationship (use only classes which are child
classes of ‘Phenomenon’), i.e. ‘containsDataAboutPhenomenon some

CoronalMassEjection’

6.1.2 Extend the Ontology further
You can introduce new classes and new relationships between classes. If these should be
accessible via the web service you need to modify the web service as well. Make sure all
additions are properly annotated and do not lead to inconsistencies in the ontology.

6.2 Maintaining & Extending the Web Service
The class ‘SMSImpl’ contains the implementation of the web service as defined in the
WSDL of the service. The main functionality is implemented in the class ‘QueryOntology’
in the ontology directory of the source code. Problems with the code should be fixed in this
class.

Another maintaining task would be the upgrading of the ontology libraries used (owlapi,
HermiT). For this you modify the ‘pom.xml’ in the ‘helio-sms’ directory by changing the
version number to the latest and rebuilt (including a Maven clean). Test thoroughly and also
check the log files for warning/error messages.

If you intent to extend the functionality by providing additional web service functions you
should follow your own implementation preferences either writing the Java code and
generating the WSDL from that or defining the WSDL and generating the Java. Make sure
you add also suitable unit test for your new functionality and add Java Doc tags to the source
code.

