

Heliophysics
Integrated
Observatory

Project No.: 238969
Call: FP7-INFRA-2008-2

Service Interface Specification
Definition of Required Capabilities

Version 1.1

Title: Service Interface Specification
Document
No.:

HELIO-UCL-S2-003-RQ
Deliverable No. S1.8

Date: 15 October 2013
Editor: Kevin Benson, UCL-MSSL
Contributors: Anja Le Blanc, R.D. Bentley

Distribution: Project

Service Interface Specification
HELIO Deliverable S1.8

25/10/2013 13:21 ii

Revision History

Version Date Released by Detail

V0.1 20/02/12 K. Benson 1st Draft

V0.2 03/07/12 A. Le Blanc Many comments

 V1.0 24/07/12 K. Benson Released version

V1.1 15/10/13 K. Benson Minor Clean up on fonts and
shading. UCD response of
VOTable added. Plus WSDL
and param updates on HQI

Service Interface Specification
HELIO Deliverable S1.8

25/10/2013 13:21 iii

1	 Introduction	 ...	 1	

2	 HELIO	 Query	 Interface	 ..	 2	
2.1	 Introduction ... 2	
2.2	 Document References .. 2	
2.3	 Interface Requirements ... 2	
2.4	 HTTP-GET .. 2	

2.4.1	 Order and cardinality of parameters .. 3	
2.5	 HTTP-POST .. 3	
2.6	 Soap Based Service ... 3	
2.7	 Parameters ... 3	
2.8	 Details of Parameter ... 4	

2.8.1	 FROM .. 4	
2.8.2	 SELECT .. 4	
2.8.3	 WHERE .. 5	
2.8.4	 SQLWhere .. 6	
2.8.5	 POS, SIZE, REGION .. 6	
2.8.6	 MAXRECORDS, STARTINDEX .. 6	
2.8.7	 IVOA TAP Protocol Conformance (Optional) ... 6	

2.9	 Response of the interface ... 7	
2.9.1	 Successful .. 8	
2.9.2	 Overflows ... 8	
2.9.3	 Error – Invalid Parameter, Invalid Query, Writing of Results 9	

2.10	 Registration of HELIO Query Interface ... 10	
2.10.1	 Capabilities and Extension ... 10	
2.10.2	 Table metadata .. 11	
2.10.3	 VOSI Registration .. 12	

3	 Asynchronous	 and	 Long	 Running	 Queries	 ...	 13	
3.1	 Base URL for HTTP GET .. 13	

3.1.1	 MODE=query ... 13	
3.1.2	 Response ... 13	

3.2	 MODE=phase&ID={id} .. 13	
3.2.1	 Response ... 13	
3.2.2	 Error ... 13	

3.3	 MODE=result&ID={id} ... 13	
3.3.1	 Response ... 13	

3.4	 SOAP Interface ... 14	
3.5	 Registration of Long Running Query Interface .. 14	

4	 Registry	 ..	 15	
4.1	 Identifier and XML Schema Standards ... 15	
4.2	 Interface or Reference .. 15	
4.3	 Harvesting HELIO Services .. 15	

5	 Running	 Applications	 –	 Universal	 Worker	 Service	 -‐	 HELIO	 Context	 Service	 	 17	
5.1	 Interface .. 17	
5.2	 Job Language ... 17	

5.2.1	 Details of Job Description Language (JDL): .. 17	
5.3	 Registration of UWS services ... 18	

Service Interface Specification
HELIO Deliverable S1.8

25/10/2013 13:21 iv

	

Service Interface Specification
HELIO Deliverable S1.8

 1

1 Introduction	
Document describes each of the primary interfaces used as services in the HELIO
architecture. HELIO clients as well as other external clients can view the
specification and understand how to interact with each of the services. This
document does not describe the location and connection of each of these interfaces
in the HELIO framework. Primary interfaces are:

• HELIO Query Interface – Query interface used by the HELIO Framework for
accessing the services as an HTTP GET/POST style queries.

• HELIO Query Interface Asynchronous – Query interface described for longer
running queries where a standard HTTP GET/POST could not be used.

• Registry – Which follows an IVOA standard interface to describe resources in
HELIO. Resources in this context can be the services, table metadata,
applications, and other metadata such as observatories that were deemed
useful for HELIO clients in the framework.

• Universal Worker Service (UWS) – Is the interface to describe a particular
command-line based application that can be ran as a service over the web.
For example HELIO clients can obtain a particular image or coordinate
information by using the UWS Flare Plotting and Coordinate Transformation
Services.

IVOA specifications are referenced in the HELIO Interfaces and specifications;
specific versions are given as references below when applicable. All IVOA
document can be obtained from their repository located at:

 http://www.ivoa.net/documents/index.html

 	

Service Interface Specification
HELIO Deliverable S1.8

 2

2 HELIO	 Query	 Interface	

2.1 Introduction	
HELIO Query Interface (HQI) is a Web-service, which enables the retrieval of
information in a VOTable format, targeted at time-domain data though not restricted
to just the time-domain. Queries are submitted using simple parameters and
keywords that are based around HELIO Missions and Instruments. Queries are
targeted for HELIO datasets but can be generally used for any time-based data sets.
Queries may be submitted using the required HTTP-GET/POST protocol or SOAP
based service.

This document formalizes the syntax and requirements of HQI as a higher-level
parameter-based query language for querying tabular data. HQI complements the
requirements of the IVOA Parameterized Query Language (PQL) and offers more
expressive and powerful extensions described further in the document. HQI also
allows SQL based searching when connected to JDBC compliant databases.
Positional searches as described in PQL have also been extended to accompany the
HELIO environment.

2.2 Document	 References	
PQL specification:

http://www.ivoa.net/internal/IVOA/TableAccess/PQL-0.2-20090520.pdf

VOSI specification:

http://www.ivoa.net/documents/VOSI/20110531/REC-VOSI-1.0-20110531.pdf

VOTable specification:

http://www.ivoa.net/Documents/VOTable/20091130/REC-VOTable-1.2.pdf

2.3 Interface	 Requirements	
Two types of interfaces are defined below: HTTP (using both GET and POST
methods) and SOAP. A provider MAY implement one or both interfaces. Interfaces
are registered as capabilities in a IVOA compatible Registry, which allows clients to
determine the interface available for querying. Use of HTTP ‘must’ support both
GET and POST methods. Use of the HQI Component by HELIO, which connects to
Relational Databases, implements both interfaces. HELIO primary GUI uses the
SOAP based interface. It is advisable to implement both interfaces.

2.4 HTTP-‐GET	
HTTP-GET interface requests a URL having two parts. Requirements are defined:

1. A base URL of the form:

• http://<server address>/path?[extra http-get argument&[...]]

Service Interface Specification
HELIO Deliverable S1.8

 3

Where <server address> and <path> are standard URI for the domain address and
location path where the service is located. The [extra http-get arguments] are not
part of this protocol and are viewed as part of the base URL.

• The URL must end in a '?' if no [extra http-get argument(s)] are specified
otherwise it must end in a '&'.

Constraints are <name>=<value> pairs as the standard GET ‘&’ (ampersand)
parameters.

• <name> must be a parameter name defined in this specification.
• <value> must be the parameter name value.
• The <name> must not be case sensitive and <value> must be case sensitive.

2. The service must respond with an XML document in the VOTable format. The
VOTable must adhere to the rules as described in section 2.9.

2.4.1 Order and cardinality of parameters
Parameters in a request may be specified in any order.

When request parameters are duplicated with conflicting values, the response from
the service is undefined. The service may reject the request or it may pick one value
for the parameter. Clients should not repeat parameters in a request.

2.5 HTTP-‐POST	
Parameters may be submitted as HTTP-POST requests to the HTTP interface.

2.6 Soap	 Based	 Service	
A SOAP implementation of the HQI is available and must follow the Web Service
Description Language (WSDL) described in the table below. The SOAP interface is
similar to the HTTP-GET interface by following many of the parameters, but allow
clients to create a contract with the WSDL.

HQI WSDL -- http://msslkz.mssl.ucl.ac.uk/helio-ics/HelioService1_1?wsdl

Asynchronous HQI WSDL -- http://msslkz.mssl.ucl.ac.uk/helio-ics/HelioLongQueryService1_1?wsdl
**More details of Asynchronous HQI in section 3.

2.7 Parameters	
Parameters and Specification constraints are defined below. Parameters in BOLD
are required:

• STARTTIME – ISO8601 input – YYYY-MM-dd['T'HH:mm:ss[SSS]]
• ENDTIME – ISO8601 input – YYYY-MM-dd['T'HH:mm:ss[SSS]]

o Both start time and end time can have one or array of values; the output
response will have data for multiple time (includes start time and end time).
Remember MAXRECORDS value is applicable for each pair of start and end
time. For example MAXRECORDS=10 and start and end time has each 2

Service Interface Specification
HELIO Deliverable S1.8

 4

values. VOTable returned will have 2 tables having (maximum) 10 records
each.

o Arrays of STARTTIME and ENDTIME values should have the same length.
They are combined in a dot product fashion (first with first, second with
second, and so on). Arrays with different lengths will be combined up to the
shortest length.

• TIME – Not used by the HELIO interface, but defined in the PQL Generic Dataset
section. This parameter is best described as STARTTIME/ENDTIME ISO8601
format separated by a ‘/’. HELIO Query Interface understands this parameter in
case of use by external clients.

• FROM – Table or Instrument name to query on, one or many tables can be queried;
each table name should be separated by comma.

o If an Instrument name is used in the FROM field the service must define a
'<SupportedInstrument>' element in the registration defining instruments the
client may query on. Instrument names are defined in a separate file here:
http://msslkz.mssl.ucl.ac.uk/helio-ics/HelioService1_0?xsd=1

o The Service provider must use these Instrument names for convention.
• MAXRECORDS – Maximum number of records the user wants to return. A server

may have defined its own maximum records that cannot be overridden by the user.
• STARTINDEX – Index number of the first row in the dataset. The client should use

this when the maximum number of rows returned by the server is reached.
• POS, SIZE – See the PQL specification, Section 3.1.1 and the detailed section on

Positional queries below.
• REGION – See the PQL specification, Section 3.1.2 and the detailed section on

Positional queries below.
• SELECT – See the PQL specification, Section 3.1.3. Optional and the default will be

all columns.
• WHERE – Where clause that follows the PQL syntax.
• SQLWHERE – Where Clause that follows the standard SQL syntax.
• IVOA TAP Conformance (Optional) – Described in Section 2.7.7 below.

2.8 Details	 of	 Parameter	

2.8.1 FROM	
The FROM parameter is required and must include at least one valid table or
instrument name. In order to perform multiple queries the FROM parameter values
are to be separated by commas. Responses of a VOTable as read in section 3.3
must contain one ‘Resource’ per query.

2.8.2 SELECT
The Select parameter is optional, but can be used to reduce the columns returned in
the query result object. Column names must be separated with commas. When the
FROM parameter has multiple tables defined the SELECT parameter must include a
table name joined with a '.' separator on the defined column name.

• The following syntax must be followed: TableName.ColumnName when the FROM
has multiple tables defined.

• When only one table is defined in the FROM parameter the SELECT parameter
should handle both cases of:

o Only a column name or

Service Interface Specification
HELIO Deliverable S1.8

 5

o TableName.ColumnName

One HELIO component (DPAS) – Data Provider Access Service, which is not connected to a
relational database, uses the SELECT parameter to choose a particular provider. DPAS
automatically selects providers with the highest rank defined in the PAT table, Provider Access
Table. Clients may specify a particular provider by using the ‘SELECT’ parameter for the SOAP
and Restful services.

A view of all the Providers and rankings can be found at ‘/HelioPatServlet’. Example viewing of the
common HELIO DPAS can be found here.
http://msslkz.mssl.ucl.ac.uk/helio-dpas/HelioPatServlet

Tests
http://msslkz.mssl.ucl.ac.uk/helio-dpas/HelioQueryServlet?STARTTIME=2009-02-
14T20:00:00&ENDTIME=2009-02-15T03:59:59&FROM=SOHO__EIT&SELECT=MEDOCSOHO

2.8.3 WHERE
The WHERE parameter follows the PQL specification, except when the FROM
parameter is overloaded with more than one Table:
• Column names must include a Table Name defined in the FROM parameter

followed by a '.' when more than one table is defined in the FROM parameter.
This syntax is optional when ‘only’ one FROM parameter is defined to follow the
PQL specification.

o e.g. TableNameA.columnName

Examples:
SQL for one table:
WHERE=TableA.mag,4
SQL: Where TableA.mag=4
WHERE=TableA.mag,/4.8
SQL: Where TableA.mag<=4.8
WHERE=TableA.mag,4.7/8.1
SQL: Where TableA.mag between 4.7 and 8.1
Complex Where taken from PQL document
WHERE=vmag,4.5/5.5; imag,4.5/; bmag,/5.5; flag,4,5,6; jmag,4.5/5.5,/3.0,9.0/; name,*Lon*;
kmag,4.5/5.5; flux,null; last,1
SQL: vmag between 4.5 and 5.5 and imag >= 4.5 and bmag <= 5.5 and (flag = 4 or flag = 5 or flag = 6)
and (jmag between 4.5 and 5.5 or jmag <= 3.0 or jmag >= 9.0) and (name like '%Lon%') and (kmag
between 4.5 and 5.5) and (flux is null) and (last = 1)
MULTIPLE SQL:
FROM=TableA,TableB
WHERE=TableA.mag,/4.8;TableB.wave,7.2/
SQL-TableA: Where TableA.mag<=4.8
SQL-TableB: Where TableB.wave >= 7.2
(It is advisable to put your table constraints together but as demonstrated in the below example it is not
required.)
FROM=TableA,TableB
WHERE=TableA.mag,/4.8;TableB_wave,7.2/;TableA.pos,3;TableB.flag,7
SQL-TableA: Where TableA.mag<=4.8 and TableA.pos=3
SQL-TableB: Where TableB.wave >= 7.2 and TableB.flag=7

Service Interface Specification
HELIO Deliverable S1.8

 6

FROM=TableA,TableB
WHERE=TableA.mag,/TableB.mag

2.8.4 SQLWhere
HQI services that are connected to relational databases may also place a direct SQL
Where clause as a parameter. Certain clients that construct SQL clauses can use
this parameter to query an HQI service. A client should be prepared to view the
Registry contents of a service to determine if the SQLWhere parameter can be used
on Restful Service.

The SOAP has a ‘SQLSELECT’ interface that uses the standard SQL Where syntax
for queries.

2.8.5 POS,	 SIZE,	 REGION
The POS and SIZE parameters provide a straightforward facility for performing
spatial queries of astronomical catalogs, index tables, or other tables, which are
spatially indexed. The use of the parameters follows PQL convention, though it is
recommended to specify the coordinate system with the POS:

POS=X,Y,Z;CRS

Where CRS corresponds to the Coordinate Reference System (e.g., HCI for
HelioCentric Inertial System), and X,Y,Z are respectively, the x-axis, the y-axis, the
z-axis values of the corresponding CRS for which data are requested.
Example: POS=X,Y,Z;HCI&SIZE=dX,dY,dZ;Rectangle

More information can be found in the HELIO Spatial and PQL documents.

2.8.6 MAXRECORDS,	 STARTINDEX	
The service must accept a MAXRECORDS parameter specifying the maximum
number of table records (rows) to be returned. If MAXRECORDS is not specified in a
query, the service may apply a default value or may set no limit. If the result set for a
query exceeds this value, the service must only return the requested number of
rows. If the result set is truncated in this fashion, it must include an overflow
indicator as specified in section 2.8.2. STARTINDEX defines where the records
should start. Clients may view the VOTableINFO elements to determine if all
resources have been reached.

2.8.7 IVOA	 TAP	 Protocol	 Conformance	 (Optional)	
With minor additional parameters a HELIO Query Service Implementation can
conform to the primary query mechanism that is defined in the IVOA Table Access
Protocol. By conforming to the TAP protocol would allow other clients that conform
to the specification to query on HELIO Services. The HELIO Query Interface
Component implements these optional parameters to allow IVOA clients to query on
the HELIO services. Parameters to be added:

• REQUEST parameter that will be set to ‘doQuery’

Service Interface Specification
HELIO Deliverable S1.8

 7

• LANG parameter that ‘must’ be either ADQL or PQL.
• QUERY parameter used when the LANG is set to ADQL. The QUERY

parameter is a string version of the ADQL. In majority of cases this is a SQL
string and is expected for HELIO support at this stage to be a standard SQL
string.

• MAXREC is the same as MAXRECORDS as described in section 2.7.6
• /sync – TAP expects http-get (or POST) queries to be registered with a ‘/sync’

base url.

The full IVOA TAP protocol can be described here:
http://www.ivoa.net/documents/TAP/20100327/REC-TAP-1.0.html. Following section
2.7.7 points, majority of clients would be able to query on HELIO services.

2.9 Response	 of	 the	 interface	
The Response of an interface must conform to XML VOTable 1.2 format conforming
to the IVOA VOTable schema http://www.ivoa.net/xml/VOTable/VOTable-1.1.xsd.

The Requirements of the VOTable must follow the requirements listed below:

• MIME type should be in the form of 'text/xml' or optionally 'text/xml;x-votable'
• There must be a 'Resource' element per data set query and that 'Resource'

contains a single 'TABLE'.
• Each 'Resource' element must contain an 'INFO' element with a 'name' attribute

set to “QUERY_STATUS” with the 'value' attribute set to either “OK” or “ERROR”.
• The 'TABLE' must have 'FIELD' elements with UCD and UTYPE attributes. Only

one 'FIELD' allowed for each UTYPE.
• HELIO Query Interfaces usually contain time information and other common

response fields. HELIO interfaces should use these ucd and utypes:
o TIME – UCD: time.phase Utype: helio:time.time Should use defined as

xtype=iso8601
o Julian Integer – UCD: time Utype:

helio:trajectories.julian_date.julian_date_int
o Images – UCD: VOX:Image_AccessReference (VO Extension ucd used

by other clients to recognise a particular image field in the votable)
• The service must respond with a VOTABLE in the case of error. The VOTABLE

must contain a single 'INFO' element with the 'name' attribute set to 'ERROR'
e.g. name=”ERROR” with the corresponding 'value' attribute explaining the error,
if the error occurs before any processing of results. Errors such a Overflow,
Invalid Parameters, Invalid Query, and Writing result streams are defined in the
following sections and must have this VOTABLE returned when encountered.

• Must be one Resource with a Table per dataset query.
• If more than one STARTTIME and ENDTIME pair are used in a query, then each

Table element of the VOTABLE must correspond to a pair of STARTTIME and
ENDTIME.

Service Interface Specification
HELIO Deliverable S1.8

 8

2.9.1 Successful	 	

Example:
<?xml version="1.0"?>
<!DOCTYPE VOTABLE SYSTEM "http://us-vo.org/xml/VOTable.dtd">
<VOTABLE version="1.0">
<RESOURCE ID="SOHO_EIT456">
<DESCRIPTION>
SOHO EIT and CDS time based query.
Note the second Table below.
</DESCRIPTION>
<TABLE ID="SOHO_EIT_TABLE_Results">
<DESCRIPTION> SOHO EIT</DESCRIPTION>
<FIELD name="unique_id" datatype="char" arraysize="*" ucd="ID_MAIN">
<DESCRIPTION> Integer key </DESCRIPTION>
</FIELD>
<FIELD name="FitsURL" datatype="char" arraysize="*" ucd=”VOX:Image_AccessReference”>
<DESCRIPTION> Url to the Fits file. </DESCRIPTION>
</FIELD>
<FIELD name="StartTime" datatype="char" arraysize="*" ucd=”VOX:START_TIME”>
<DESCRIPTION> Observing start time. </DESCRIPTION>
</FIELD>
<FIELD name="EndTime" datatype="char" arraysize="*" ucd=”VOX:END_TIME”>
<DESCRIPTION> Observing end time. </DESCRIPTION>
</FIELD>
<DATA>
<TABLEDATA>
<TR>
<TD>384559</TD><TD>http://www.sohodata/eit/2008/09/22/fits/eit.fits</TD>
<TD>2008-02-20T21:33:10</TD><TD>2008-02-20T21:34:10</TD>
</TR>
<TR>
<TD>384559</TD><TD>http://www.sohodata/eit/2008/09/22/fits/eit.fits</TD>
<TD>2008-02-20T21:33:10</TD><TD>2008-02-20T21:34:10</TD>
</TR>
</TABLEDATA>
</DATA>
</TABLE>
<TABLE>
<DESCRIPTION> SOHO CDS</DESCRIPTION>
</TABLE>
</RESOURCE>
</VOTABLE>

2.9.2 Overflows	
If a query is executed by a HQI service, the number of rows in the table of results
may exceed a limit requested by the user (using the MAXRECORDS parameter) or a
limit set by the service implementation (the default or maximum value of
MAXRECORDS). In these cases, the query is said to have 'overflowed'. Typically, a
HQI service will not detect an overflow until some part of the table of results has
been sent to the client.

If an overflow occurs, the HQI service must produce a table of results that is valid, in
the required output format, and which contains all the results up to the point of
overflow. Since an output overflow is not an error condition, the MIME type of the

Service Interface Specification
HELIO Deliverable S1.8

 9

output must be the same as for any successful query and the HTTP status-code
must be as for a successful, complete query.

If the output format is VOTable, section “Error: Reference source not found”
describes the method by which the overflow is reported. No method of reporting an
overflow is defined for formats other than VOTable.

Example:
<RESOURCE type=”results”>
<INFO name="QUERY_STATUS" value="ERROR">
<DESCRIPTION>unrecognized operation</DESCRIPTION>
</INFO>
<INFO name="SPECIFICATION" value="TAP"/>
<INFO name=”VERSION” value=”1.0”/>
<INFO name="REQUEST" value="doQuery"/>
<INFO name="baseUrl" value="http://webtest.aoc.nrao.edu/ivoa-dal"/>
<INFO name="serviceVersion" value="1.0"/
...
</RESOURCE>

If an overflow occurs (result exceeds MAXRECORDS), the service must close the
table and append another INFO element to the RESOURCE (after the TABLE) with
name=”QUERY_STATUS” and the value=”OVERFLOW”.

Example:
<RESOURCE type=”results”>
<INFO name="QUERY_STATUS" value="OK"/>
...
<TABLE>...</TABLE>
<INFO name="QUERY_STATUS" value="OVERFLOW"/>
</RESOURCE>

In the above example, the TABLE should have exactly MAXRECORDS rows.
If the TABLE does not contain the entire query result, one INFO element with
value=”OVERFLOW” or value=”ERROR” must be included after the table.

2.9.3 Error	 –	 Invalid	 Parameter,	 Invalid	 Query,	 Writing	 of	 Results	

Example Invalid Parameter:

<?xml version="1.0"?>

<!DOCTYPE VOTABLE SYSTEM "http://us-vo.org/xml/VOTable.dtd">
<VOTABLE version="1.0">
<DESCRIPTION>SOHO EIT query service</DESCRIPTION>
<INFO name="EXECUTED_AT" value="2010-06-04 19:02:31"/>
<INFO name="QUERY_STRING">
SELECT obs_id,obs_name,obs_type,obs_start_date,obs_end_date,obs_operation_type FROM
observatory WHERE (obs_start_date>='1890-AA-20T20:30:56' AND obs_end_date<='2009-10-20
0:30:56') AND obs_id like '%%' ORDER BY observatory.obs_start_date LIMIT 5000
</INFO>
<INFO ID="Error" name="Error" value="Start Time could not be parsed"/>

Service Interface Specification
HELIO Deliverable S1.8

 10

</VOTABLE>

Example of Invalid Query:

<?xml version="1.0"?>

<!DOCTYPE VOTABLE SYSTEM "http://us-vo.org/xml/VOTable.dtd">
<VOTABLE version="1.0">
<DESCRIPTION>SOHO EIT query service</DESCRIPTION>
<INFO name="EXECUTED_AT" value="2010-06-04 19:02:31"/>
<INFO name="QUERY_STRING">
SELECT obs_id,obs_name,obs_type,obs_start_date,obs_end_date,obs_operation_type FROM
observatory WHERE (incorrect_start_date >='1890-AA-20T20:30:56' AND obs_end_date<='2009-10-
20 0:30:56') AND obs_id like '%%' ORDER BY observatory.obs_start_date LIMIT 5000
</INFO>
<INFO ID="Error" name="Error" value="Query Error: Unknown column incorrect_start_date"/>
</VOTABLE>

If an error occurs while writing the rows of the VOTable, the service must close the
table and append another INFO element to the RESOURCE, after the TABLE, with
name=”QUERY_STATUS” and the value=”ERROR”.

Example:
<RESOURCE type=”results”>
<INFO name="QUERY_STATUS" value="OK"/>
...
<TABLE>...</TABLE>
<INFO name="QUERY_STATUS" value="ERROR" />
</RESOURCE>

The content of these trailing INFO elements is optional and intended for users; client
software should not depend on it.
Thus, one INFO element with name=”QUERY_STATUS” and value=”OK” or
value=”ERROR” must be included before the TABLE.

2.10 Registration	 of	 HELIO	 Query	 Interface	
The HELIO Registry component describes metadata about a particular service. HQI
has optional capabilities depending on what the service allows. This information
needs to be registered so it can be presented to clients to distinguish what is
capable. Table metadata for the HQI service should also be registered though it is
not required. Capabilities and Table metadata uses the IVOA VOSI (VO Support
Interface) to be described, the HELIO Registry can harvest this data to be placed
into the Registry.

2.10.1 Capabilities	 and	 Extension	
Capability metadata elements in the Registry describe the location of the service(s)
along with an ID that corresponds to a particular standard. A Resource in the
Registry may describe several capabilities focused on a particular standard the
service implements. The HQI defines two capabilities for the Query Service. One

Service Interface Specification
HELIO Deliverable S1.8

 11

for the HTTP GET/POST style ‘ParamHTTP’ and another standard for SOAP
‘WebService’, this allows clients to more easily query for a particular standard.
Registry metadata allows the SOAP and REST to be mixed into one capability, but
we discovered that various Registry parsers sometimes ignored mixed interfaces in a
single capability. This provoked us to separate them into two different capability
elements. Multiple mirrored copies of the same service are also demonstrated in the
sample, by defining two accessURL elements in the same interface.

SQL and Positional elements are optional and they are captured in a special
extension to the IVOA registry metadata.

Sample of HQI Capability

<capability standardID="ivo://helio-vo.eu/std/FullQuery/Soap/v1.0">
<interface xsi:type="vr:WebService">
<accessURL use="full">
http://msslkz.mssl.ucl.ac.uk/helio-ils/HelioService
</accessURL>
<accessURL use="full">
http://msslkr.phys.ucl.ac.uk/helio-ils/HelioService
</accessURL>
<SQLEnabled>true</SQLEnabled>
<PositionalQueryEnabled>true</PositionalQueryEnabled>
</interface>
</capability>
<capability standardID="ivo://helio-vo.eu/std/FullQuery/v1.0">
<interface xsi:type="vs:ParamHTTP">
<accessURL use="full">
http://msslkz.mssl.ucl.ac.uk/helio-ils/HelioQueryService
</accessURL>
<accessURL use="full">
http://msslkr.phys.ucl.ac.uk/helio-ils/HelioQueryService
</accessURL>
<SQLEnabled>true</SQLEnabled>
<PositionalQueryEnabled>true</PositionalQueryEnabled>
</interface>
</capability>

2.10.2 Table	 metadata	
Table metadata for a Catalogue service can be useful for the clients to construct
queries. Table metadata must be available at the service, and it is recommended
that they be registered as a separate Resource in the Registry.

This separate resource must identify the HQI query service using a relationship tag.

<relationship>
<relationshipType>serviced-by</relationshipType>
 <relatedResource>ivo://helio-vo.eu/ils</relatedResource>
</relationship>

Service Interface Specification
HELIO Deliverable S1.8

 12

Table metadata describes the Catalogue along with Columns, UCD, descriptions and
datatypes. This data would allow certain clients to construct a knowledgable query
for a user.

<table>
<name>instruments</name>
<column>
 <name>ins_id</name>
 <description>Instrument Name</description>
 <ucd>meta.id;instr</ucd>
</column>
<column>
<name>ins_start_date</name>
<description>Instrument Start Date</description>
<ucd>time.start</ucd>
</column>
</table>

2.10.3 VOSI	 Registration	
Registry will harvest VOSI capabilities for particular metadata; this information is
harvested and placed into the Registry. VOSI is an IVOA standard VO Support
Interfaces that describes capabilities and tables. Capabilities are the urls that define
the services and tables that describe table metadata where applicable. This allows
technical metadata that would normally come from a service or database to be
harvested, while scientific core data could be submitted manually. HELIO follows the
IVOA VOSI specification defined at:
http://www.ivoa.net/documents/VOSI/20110531/REC-VOSI-1.0-20110531.pdf

 	

Service Interface Specification
HELIO Deliverable S1.8

 13

3 Asynchronous	 and	 Long	 Running	 Queries	
Queries that can take a considerable amount of time or have the advantage of
saving the results on the server, should consider implementing Long Running Query
Interface. This interface allows the client to poll the server to discover when a query
is completed.

SOAP and HTTP-GET interfaces are available.

3.1 Base	 URL	 for	 HTTP	 GET	
All Long Running Queries work off the base URL and by using the same parameters.

3.1.1 MODE=query	
To start a query in the Long Running Interface a MODE=query must be one of the
parameters along with the query constraints defined in the ‘Query Interface’ section
above.

3.1.2 Response	
Response should be an xml page of simply an ID.

<ID>{unique id}</ID>

Example:

<ID>HQ21296</ID>

3.2 MODE=phase&ID={id}	
To check the status of a query set a parameter MODE=phase along with the unique
ID given from the query.

3.2.1 Response	
<Status><ID>HQ61334</ID> <status>COMPLETED</status> <description>query
completed</description></Status>

3.2.2 Error	
<Status><ID>HQ61334</ID> <status>ERROR</status> <description>Improper Date
and Time</description></Status>

3.3 MODE=result&ID={id}	
Results are given with a MODE=result followed by the ID parameter given from the
query.

3.3.1 Response	

<ResultInfo><ID>HQ61334</ID>
<resultURI>http://manunja.cesr.fr/MDES/MDES_HQ61334.xml</resultURI> <fileInfo></fileInfo>
<status>COMPLETED</status>
<description>Data Is Ready</description>
</ResultInfo>

Service Interface Specification
HELIO Deliverable S1.8

 14

3.4 SOAP	 Interface	
The SOAP interface is similar to HTTP-GET, but is described in a Web Service
Description Language (WSDL). The WSDL standard allows clients to create a
contract with the Service and have access to all methods.

HQI WSDL -- http://msslkz.mssl.ucl.ac.uk/helio-ics/HelioService1_1?wsdl

Asynchronous HQI WSDL -- http://msslkz.mssl.ucl.ac.uk/helio-
ics/HelioLongQueryService1_1?wsdl

3.5 Registration	 of	 Long	 Running	 Query	 Interface	
Similar to HQI but capabilities ID conforms to a different standard.

<capability standardID="ivo://helio-vo.eu/std/LongFullQuery/Soap/v1.0">
<interface xsi:type="vr:WebService">
<accessURL use="full">
http://msslkz.mssl.ucl.ac.uk/helio-ils/HelioLongQueryService
</accessURL>
<accessURL use="full">
http://msslkr.phys.ucl.ac.uk/helio-ils/HelioLongQueryService
</accessURL>
<SQLEnabled>true</SQLEnabled>
<PositionalQueryEnabled>true</PositionalQueryEnabled>

</interface>
</capability>
<capability standardID="ivo://helio-vo.eu/std/LongFullQuery/v1.0"> <interface
xsi:type="vs:ParamHTTP">
<accessURL use="full">
http://msslkz.mssl.ucl.ac.uk/helio-ils/LongRunningQueryService
</accessURL>
<accessURL use="full">
http://msslkr.phys.ucl.ac.uk/helio-ils/LongRunningQueryService
</accessURL>
<SQLEnabled>true</SQLEnabled>
<PositionalQueryEnabled>true</PositionalQueryEnabled>

</interface>
</capability>

 	

Service Interface Specification
HELIO Deliverable S1.8

 15

4 Registry	
The Registry will allow a client to be able to locate, get details of, and make use of,
any resource located anywhere in the IVO space, on any Virtual Obervatory such as
the HELIO Virtual Observatory. The IVOA will define the protocols and standards
whereby different registry services are able to interoperate and thereby realise this
goal.

4.1 Identifier	 and	 XML	 Schema	 Standards	
The Registry is designed to describe resources, information, protocols, and services
in the form of XML Schemas. These schemas can be found at:
http://www.ivoa.net/xml/index.html

Identifiers are a global unique identifier for every resource of the Registry. Each
resource contains an identifier of the form of URI following this syntax:
ivo://{autorhityId}/{resourcekey}

The authority id is a type of naming authority or organization. A Registry may
manage many authorities, but the standard one used by HELIO currently is: ‘helio-
vo.eu’. The resource key is unique to that naming authority. Although no real
meaning is given to a resource key it is common practice to give a name that is
understandable. Software clients may use identifiers to quickly get at a Resource
in a registry, but it is common for identifiers to be hidden from the Users.

See ‘How to use Registry’ document on creating new entries. More information on
identifiers may found here:

http://www.ivoa.net/Documents/REC/Identifiers/Identifiers-20070302.html

4.2 Interface	 or	 Reference	
The Registry component implements the IVOA Registry interface, that can be found
at: http://www.ivoa.net/Documents/RegistryInterface/

4.3 Harvesting	 HELIO	 Services	
The Registry interface defines a Harvesting interface for Harvesting other Registries.
This interface allows the concepts of global Registries to be created which will
contain all the Resources of a ‘publishing’ registry. This Harvesting interface is based
on an Open Archives Initiatives (OAI) concept. The HELIO Registry has this
harvesting interface, but also has another ability to harvest Virtual Observatory
Standard Interface (VOSI) documents or even full Resource entries maybe pulled
from a service into a registry. Two types of VOSI resources that HELIO utilizes are:

Capabilities: This is a XML capabilities element following the Registry XML
Schemas that define capabilities and location of services. One service may define
several capabilities i.e. ParamHTTP service (REST), SOAP, or other VOSI services
i.e. tables.

Tables: is XML data following Registry XML Schemas based around Catalogues that
define table metadata of a particular Catalogue.

Service Interface Specification
HELIO Deliverable S1.8

 16

See ‘How to use Registry’ on starting a Harvest of VOSI documents. The Registry
will harvest a ‘Capabilities’ and automatically fill the resource in the Registry. If other
VOSI information is noticed such as Tables, this is also picked up and harvested into
the desired resource.

 	

Service Interface Specification
HELIO Deliverable S1.8

 17

5 Running	 Applications	 –	 Universal	 Worker	 Service	 -‐	 HELIO	
Context	 Service	

The Context Service primary ability is to run applications on a remote server
asynchronously. The applications can handle any number of inputs and outputs; the
outputs are URL references to the results. Applications that are run remotely must
not be interactive, meaning they cannot respond to user input in the middle of an
application. Applications may produce any type of file, but must not be GUI based
requiring a Graphical interface.

5.1 Interface	
The Interface to the UWS follows the IVOA standard. Located here:
http://www.ivoa.net/Documents/UWS/index.html

5.2 Job	 Language	
The UWS interface only references a Job Language to be used but does not require
the Job Language. In HELIO we adopted software from a previous project, which
used its own XML Job Language and later conformed to the IVOA UWS interface.
The XML schema that describes the Job Language is now part of the IVOA schema
repository. The JDL described is a general descriptive XML, which accommodates a
series of inputs and outputs.

5.2.1 Details	 of	 Job	 Description	 Language	 (JDL):	
The JDL uses an xml schema defined by a previous project component called CEA
Common Execution Architecture. The XML allows you to enter the inputs and
outputs to run a particular application. These inputs and outputs are defined in the
registry and originated from the setup of the CEA component on a server. The JDL
allows you to specify if a parameter is ‘indirect’. Setting a parameter of indirect to
‘true’ will allow you to place a reference for the input i.e. commonly a URL reference.

Outputs required a modification for HELIO, the current CEA component required
outputs to go to a particular storage space in the IVOA i.e. known as VOSpace.
Though the CEA also kept the output internally on the server. VOSpace was not
being used at the time of HELIO and a decision was made to allow the Output to use
a special reference URI reference of ‘internalstorage://’. This allows CEA component
to detect the special URI and return back an ‘http’ URL reference that is internal to
the CEA component.

Example:
<tool xmlns="http://www.ivoa.net/xml/CEA/types/v1.2" id="ivo://helio-vo.eu/cxs/goesplotter"
interface="simple">
 <input>
 <parameter id="StartDate" indirect="false">
 <value>2000-01-30T00:00:00</value>
 </parameter>
 <parameter id="EndDate" indirect="false">
 <value>2000-12-31T03:59:59</value>
 </parameter>

Service Interface Specification
HELIO Deliverable S1.8

 18

 <parameter id="Type" indirect="false">
 <value>Proton</value>
 </parameter>
</input>
<output>
 <parameter id="goes_plot.png" indirect="true">
 <value>internalstorage:/</value>
 </parameter>
</output>
</tool>

5.3 Registration	 of	 UWS	 services	
The HELIO UWS component installation and configured will contain a registration
URL that contains the whole registration document. All metadata content are
described with the CXS component, this allows Registration by uploading a CXS
Registration URL to the Registry. The Registry will take the URL expecting XML in
the format that corresponds to the IVOA XML schemas and insert it into the
database. Example of a registration can be found here:
http://msslkz.mssl.ucl.ac.uk/cxs/uws/reg. See ‘All resources in single document’ to
view the contents the Registry will contain and separate each entry into a separate
Resource into the Registry.

	

